

Voltage Type Dual-axis Inclinometer

General Description

HVS128T is a Dual axis voltage output sensor that allows the customer to calculate the dip value of the current product from the analog voltage output. The product uses MEMS micro-electromechanical import technology, and the product has a small size. Features such as low power consumption, optional measurement range, supply voltage Optionally, it is converted to an oblique angle by gravity sensing. Converted to voltage output, the product is easy to use, installerIt is a strong anti-interference ability, and it is an important part of solar energy, wind energy, engineering machinery and automation equipment. Good choice of control (products can be customized)

Specifications

Accuracy: 0.01° Resolution: 0.01°

Measuring axis: X,Y-axis

Power supply voltage range: 9-35v

Anti-vibration performance: >2000g Store temperature : -55°C~+100°C

Zero temperature drift (-40 ° C ~ 85 ° C): ± 0.005 °

Protection rating: IP67 Measuring range: ±90°

Output signal:voltage output

Wide temperature working: -40°C ~ +85°C

Applications

1: Industrial automatic leveling

3: Solar automatic tracking

5: Lifting angle control of cranes

7: Measuring and mapping instruments

2: Medical equipment

4: Tower tilt monitoring

6: Structural deformation monitoring

8: Military equipment automation

Electrical parameters

Parameters	conditions	Min	Standard	Max	Unit
power supply		5	12 24	36	V
Working current		15	30	40	mA
Working temperature		-40		+85	°C
Store temperature		-55		+100	°C

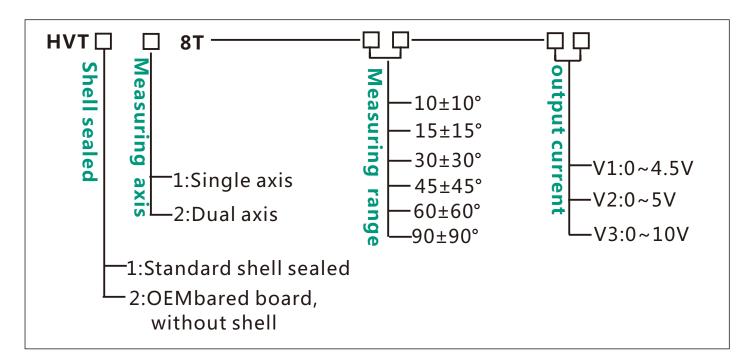
Technical Data

Parameters	conditions	HVS128T-10	HVS128T-30	HVS128T-60	HVS128T-90
Measuring rang		±10°	±30°	±60°	±90°
Measuring axis		X,Y	X,Y	X,Y	X,Y
Resolution		0.01°	0.01°	0.01°	0.01°
Zero temperat- ure coefficient	-40°C~80°C	0.005°/°C	0.005°/℃	0.005°/°C	0.005°/℃
Absolute accuracy		0.01°	0.015°	0.02°	0.03°
Zero Position	0° Output	2.5V	2.5V	2.5V	2.5V
Power on time		<3S	< 3S	<3S	<3S
Output frequency	5-100HZ	Optional	Optional	Optional	Optional
Baud rate	2400-115200	Optional	Optional	Optional	Optional
Shockproof	2000g.0.5ms、3Times/Axis(half sinusoid)				
Average no reason Obstacle time MTBF	≥800000hours/times				
Insulation resistance	≥100MΩ				
Output signal	0~4.5V、0~5V、0~10V				
Weight	100g(without cable)				

This Technical data only list \pm 10 °, \pm 30 °, \pm 60 °, \pm 90 ° series for reference, other measuring range please refer to the adjacent parameters.

Key words

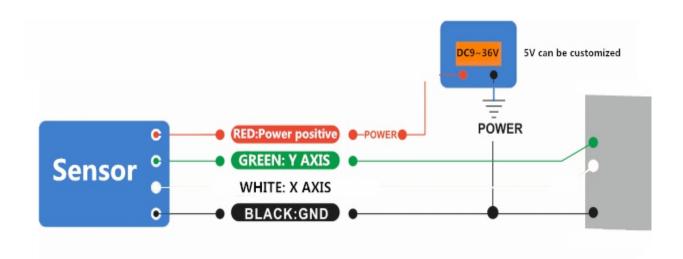
Resolution: Refers to the sensor in measuring range to detect and identify the smallest changed value.


Absolute accuracy: Refers to in the normal temperature circumstances, the sensor absolute linearity, repeatability, hysteresis, zero deviation, and transverse error comprehensive error.

Response time: Refers to the sensor in an angle change, the sensoroutput value reached the standardtime required.

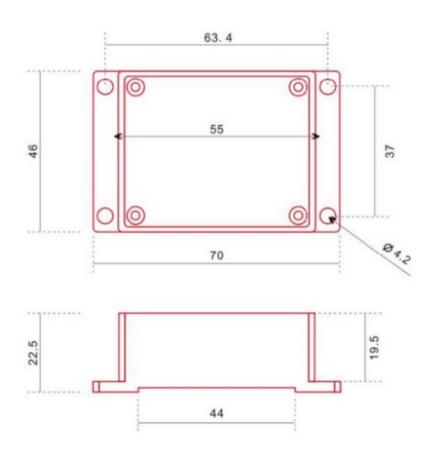
Mechanical Parameters

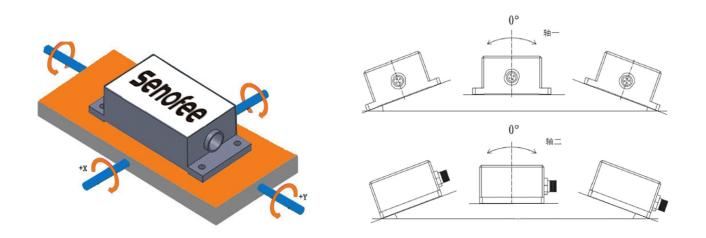
Connectors	1.2m lead cable (customized)		
Protection glass	IP67		
Enclosure material	Aluminum Oxide		
Installation	4*M4 screws		


Ordering information

E.g : HVT 12 8 T -10-V2 : standard/Dual axis/ $\pm 10^\circ$ Measuring range / $0 \sim 5$ V output Voltage

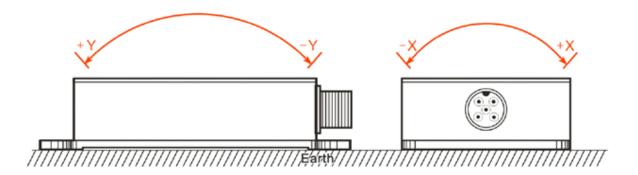
Electrical Connection

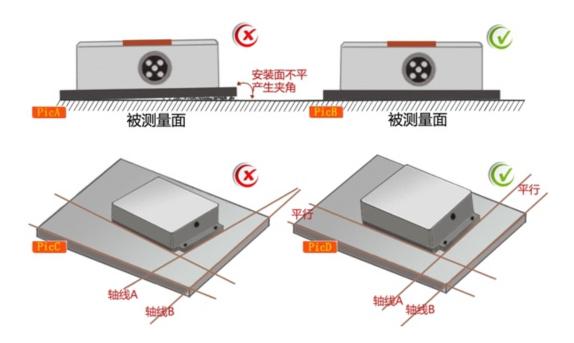

Line		BLACK	GREEN	WHITE
color function DC 9~36V		GND Power Negative	Y axis	X axis


Working Principle

Adopt the European import of core control unit, using the capacitive micro pendulum principle and the earth gravity principle, when the the inclination unit is tilted, the Earth's gravity on the corresponding pendulum will produce a component of gravity, corresponding to the electric capacity will change, by enlarge the amount of electric capacity, filtering and after conversion then get the inclination.

Product size chart


Measuring direction


Production installation notes:

Please follow the correct way to install tilt sensor, incorrect installation can cause measurement errors, with particular attention to the "surface", "line": :

- 1) The Sensor mounting surface and the measured surface must be fixed closely, smoothly, stability, if mounting surface uneven likely to cause the sensor to measure the angle error. See Figure Pic.AB
- 2) The sensor axis and the measured axis must be parallel ,the two axes do not produce the angle as much as possible. See Figure Pic.CD :

The axis of the sensor must be parallel to the axis to be measured, and the two axes should not be angled as much as possible.

The mounting surface of the sensor must be tight, flat and stable when it is fixed to the surface to be measured.

SINOFEE

ITEM NO: HVS128T

Voltage Type Dual-axis Inclinometer

Email:info@senofee.com / http://www.senofee.com